LAMA
lama::SimpleStorageStrategy< ValueType > Class Template Reference

#include <SimpleStorageStrategy.hpp>

Inheritance diagram for lama::SimpleStorageStrategy< ValueType >:

Public Types

typedef std::string::const_iterator StringIterator
typedef ValueType ValueType
 the Type of elements of this.
enum  SyncKind { ASYNCHRONOUS, SYNCHRONOUS }
 SyncKind describes if the communication and computation should be done synchronously or asynchronously. More...
enum  MatrixKind { DENSE, SPARSE }
 MatrixKind describes if a matrix is dense or sparse. More...
typedef const MatrixExpressionMemberType
 ExpressionMemberType is the type that is used the template Expression to store a Vector.

Public Member Functions

 SimpleStorageStrategy (Matrix &other)
 Construct a square matrix with the given size and the specified distribution.
virtual ~SimpleStorageStrategy ()
 virtual destructor of SimpleStorageStrategy
void applyStrategy ()
virtual const char * getTypeName () const
 Virtual method that delivers the class name to which a matrix belongs.
virtual void clear ()
 Clear the full matrix, resets global and local sizes to 0.
virtual void allocate (const IndexType numRows, const IndexType numColumns)
 Reallocate this matrix to a replicated zero-matrix of the given shape.
virtual void allocate (DistributionPtr rowDistribution, DistributionPtr colDistribution)
 Reallocate this matrix to a distributed zero-matrix by the given distributions.
virtual void setIdentity ()
 Operator that sets the matrix to the identity matrix.
virtual void assign (const Matrix &other)
 This method assigns a matrix to this matrix with automatic conversion to the matrix type and the current row / column distribution of *this.
virtual void assign (const _MatrixStorage &other)
 This method assigns replicated/global matrix storage data to this matrix.
virtual void assign (const _MatrixStorage &storage, DistributionPtr rowDist, DistributionPtr colDist)
 Assign local storage for a distributed matrix.
virtual void buildLocalStorage (_MatrixStorage &storage) const
 Get the local part (no splitted columns) of a matrix as if colDist is replicated.
virtual void redistribute (DistributionPtr rowDistribution, DistributionPtr colDistribution)
 This method allows any arbitrary redistribution of the matrix.
virtual void getRow (Vector &row, const IndexType globalRowIndex) const
 This method returns one row of the matrix.
virtual void getDiagonal (Vector &diagonal) const
 This method returns the diagonal.
virtual void setDiagonal (const Vector &diagonal)
 This method replaces the diagonal.
virtual void setDiagonal (const Scalar scalar)
 This method replaces the diagonal by a diagonal value.
virtual void scale (const Vector &scaling)
 This method scales all values with a vector.
virtual void scale (const Scalar scaling)
 This method scales all matrix values with a scalar.
virtual Scalar getValue (IndexType i, IndexType j) const
 returns a copy of the value at the passed global indexes.
virtual IndexType getNumValues () const
 Get the total number of non-zero values in the matrix.
virtual void matrixTimesVector (Vector &result, const Scalar alpha, const Vector &x, const Scalar beta, const Vector &y) const
 matrixTimesVector computes result = alpha * this * x + beta * y
virtual void matrixTimesScalar (const Matrix &other, const Scalar alpha)
 matrixTimesScalar computes this = alpha * other
virtual void matrixTimesMatrix (Matrix &result, const Scalar alpha, const Matrix &B, const Scalar beta, const Matrix &C) const
 matrixTimesMatrix computes result = alpha * this * B + beta * C
virtual IndexType getLocalNumValues () const
 Getter routine for the local number of stored values.
virtual IndexType getLocalNumRows () const
 Getter routine for the local number of rows.
virtual IndexType getLocalNumColumns () const
 Getter routine for the local number of rows and columns.
virtual void setContext (const ContextPtr context)
 specifies on which compute back end the matrix operations should take place.
virtual ContextPtr getContextPtr () const
 Getter routine for the context.
virtual MatrixKind getMatrixKind () const
 Each derived matrix must give info about its kind (DENSE or SPARSE).
virtual void prefetch () const
 Prefetch matrix data to its 'preferred' context location.
virtual void wait () const
 wait for a possibly running prefetch.
virtual void invert (const Matrix &other)
 Compute the inverse of a matrix.
virtual Scalar maxDiffNorm (const Matrix &other) const
 returns the max norm of ( this - other )
virtual std::auto_ptr< Matrixcreate () const
 Constructor function which creates a 'zero' matrix of same type as a given matrix.
virtual std::auto_ptr< Matrixcopy () const
 Constructor function which creates a copy of this matrix.
virtual Scalar::ScalarType getValueType () const
 Query the value type of the matrix elements, e.g.
virtual bool hasDiagonalProperty () const
 hasDiagonalProperty returns the diagonalProperty of the local storage.
virtual void resetDiagonalProperty ()
 resetDiagonalProperty rechecks the storages for their diagonal property
virtual size_t getMemoryUsage () const
 getMemoryUsage returns the global memory that is allocated to hold this matrix.
const MatrixStorage< ValueType > & getLocalStorage () const
 Getter routine for local part of the sparse matrix.
const MatrixStorage< ValueType > & getHaloStorage () const
 Getter routine for halo part of the sparse matrix.
virtual void setContext (const ContextPtr localContext, const ContextPtr haloContext)
 Only sparse matrices will override this method, others will ignore second argument.
virtual const ContextgetContext () const
void setRawDenseData (const IndexType numRows, const IndexType numColumns, const OtherValueType values[], const OtherValueType eps=0.0)
 Set sparse matrix with global dense data.
void assign (const _SparseMatrix &matrix)
 Method that assigns a sparse matrix, specialization of assign( const Matrix& )
void swap (SparseMatrix< ValueType > &other)
 Swap will swap all member variables of the two sparse matrices.
void matrixTimesVectorImpl (DenseVector< ValueType > &result, const ValueType alpha, const DenseVector< ValueType > &x, const ValueType beta, const DenseVector< ValueType > &y) const
virtual void matrixTimesVectorNImpl (DenseMatrix< ValueType > &result, const ValueType alpha, const DenseMatrix< ValueType > &x, const ValueType beta, const DenseMatrix< ValueType > &y) const
 matrix times matrix for multiple dense vectors.
ValueType maxDiffNormImpl (const SparseMatrix< ValueType > &other) const
 Get the maximal difference between two elements for sparse matrices of same type.
IndexType getPartitialNumValues () const
const HalogetHalo () const
 Read access to the halo of the distributed matrix.
virtual void writeAt (std::ostream &stream) const
 Write some information about this to the passed stream.
virtual void setComputeKind (SyncKind computeKind)
 set the compute kind.
std::auto_ptr< Matrixcreate (const IndexType numRows, const IndexType numColumns) const
 Constructor creates a replicated matrix of same type as a given matrix.
std::auto_ptr< Matrixcreate (const IndexType size) const
 Constructor creates a distributed zero matrix of same type as a given matrix.
std::auto_ptr< Matrixcreate (DistributionPtr rowDistribution, DistributionPtr colDistribution) const
 Constructor creates a distributed zero matrix of same type as a given matrix.
std::auto_ptr< Matrixcreate (DistributionPtr distribution) const
 Constructor creates a distributed zero matrix of same type as a given matrix.
void assignTranspose (const Matrix &matrix)
 Assign another matrix transposed to this matrix.
void writeToFile (const std::string &fileName, const File::FileType fileType=File::BINARY, const File::DataType dataType=File::INTERNAL, const File::IndexDataType indexDataTypeIA=File::INT, const File::IndexDataType indexDataTypeJA=File::INT) const
 Writes this sparse matrix to a file in CSR format.
void readFromFile (const std::string &filename)
 Assigns this matrix with a replicated sparse matrix read from file.
std::auto_ptr< _LAMAArraycreateArray () const
 This routine creates a LAMA array with the same value type as the matrix.
Scalar operator() (IndexType i, IndexType j) const
 returns a copy of the value at the passed global indexes.
IndexType getNumRows () const
 Returns the number of global rows.
IndexType getNumColumns () const
 Returns the number of columns.
double getSparsityRate () const
virtual void matrix2CSRGraph (IndexType *xadj, IndexType *adjncy, IndexType *vwgt, CommunicatorPtr comm, const IndexType *globalRowIndices=NULL, IndexType *vtxdist=NULL) const
 transformation from matrix type to a csr graph
const DistributiongetColDistribution () const
 gets a constant reference to the column distribution.
DistributionPtr getColDistributionPtr () const
 gets a pointer to the column distribution.
SyncKind getCommunicationKind () const
 get the communication kind.
SyncKind getComputeKind () const
 get the compute kind.
void setCommunicationKind (SyncKind communicationKind)
 set the communication kind.
void inheritAttributes (const Matrix &other)
 Inherit context and kind arguments from another matrix.
VectorPtr createDenseVector (DistributionPtr distribution, const Scalar value) const
 Constructor creates a distributed dense vector of same type as a given matrix.
const DistributiongetDistribution () const
DistributionPtr getDistributionPtr () const

Static Public Member Functions

static const char * typeName ()
 Getter for the type name of the class.

Protected Member Functions

void swap (Distributed &other)
void checkSettings ()
 Test consistency of sparse matrix data, only used if ASSERT_DEBUG is enabled.
void matrixTimesMatrixImpl (const ValueType alpha, const SparseMatrix< ValueType > &A, const SparseMatrix< ValueType > &B, const ValueType beta, const SparseMatrix< ValueType > &C)
 Set this matrix = alpha * A * B + beta * C.
void setReplicatedMatrix (const IndexType numRows, const IndexType numColumns)
 Set the global/local size of replicated matrix.
void setDistributedMatrix (DistributionPtr distribution, DistributionPtr colDistribution)
 Set the global and local size of distributed matrix.
void swapMatrix (Matrix &other)
void setDistributionPtr (DistributionPtr distributionPtr)

Protected Attributes

boost::shared_ptr
< MatrixStorage< ValueType > > 
mLocalData
 local columns of sparse matrix
boost::shared_ptr
< MatrixStorage< ValueType > > 
mHaloData
 local columns of sparse matrix
Halo mHalo
 Exchange plans for halo part due to column distribution.
DistributionPtr mColDistribution
IndexType mNumRows
IndexType mNumColumns

Private Member Functions

 LAMA_LOG_DECL_STATIC_LOGGER (logger)

Private Attributes

MatrixPtr mInnerMatrix

template<typename ValueType>
class lama::SimpleStorageStrategy< ValueType >


Member Typedef Documentation

typedef const Matrix& lama::Matrix::ExpressionMemberType [inherited]

ExpressionMemberType is the type that is used the template Expression to store a Vector.

template<typename ValueType >
typedef std::string::const_iterator lama::SimpleStorageStrategy< ValueType >::StringIterator

the Type of elements of this.


Member Enumeration Documentation

enum lama::Matrix::MatrixKind [inherited]

MatrixKind describes if a matrix is dense or sparse.

Enumerator:
DENSE 

matrix kind for a dense matrix

SPARSE 

matrix kind for a sparse matrix

enum lama::Matrix::SyncKind [inherited]

SyncKind describes if the communication and computation should be done synchronously or asynchronously.

Enumerator:
ASYNCHRONOUS 
SYNCHRONOUS 

Constructor & Destructor Documentation

template<typename ValueType >
lama::SimpleStorageStrategy< ValueType >::SimpleStorageStrategy ( Matrix other)

Construct a square matrix with the given size and the specified distribution.

Parameters:
[in]matrixInputSpecifies the file name of the Matrix which used to create the generated matrix.
[in]configConfiguration which will be parsed to generate the defined matrix
template<typename ValueType >
lama::SimpleStorageStrategy< ValueType >::~SimpleStorageStrategy ( ) [virtual]

virtual destructor of SimpleStorageStrategy


Member Function Documentation

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::allocate ( const IndexType  numRows,
const IndexType  numColumns 
) [virtual]

Reallocate this matrix to a replicated zero-matrix of the given shape.

Parameters:
[in]numRowsnumber of rows
[in]numColumnsnumber of columns
Remarks:
The call allocate( 0, 0 ) implies a clear on all arrays used internally for the presentation of the matrix data.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::allocate ( DistributionPtr  rowDistribution,
DistributionPtr  colDistribution 
) [virtual]

Reallocate this matrix to a distributed zero-matrix by the given distributions.

Parameters:
[in]distributionis row distribution, number of rows given by getGlobalSize()
[in]colDistributionis col distribution, number of columns given by getGlobalSize()

The distributions specify the new global and the new local sizes for a distributed matrix.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::assign ( const Matrix other) [virtual]

This method assigns a matrix to this matrix with automatic conversion to the matrix type and the current row / column distribution of *this.

Note: other.getNumRows() == getNumRows(), other.getNumColumns() == getNumColumns() is mandatory

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::assign ( const _MatrixStorage other) [virtual]

This method assigns replicated/global matrix storage data to this matrix.

Note: the current matrix data will be overridden.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::assign ( const _MatrixStorage storage,
DistributionPtr  rowDist,
DistributionPtr  colDist 
) [virtual]

Assign local storage for a distributed matrix.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::SparseMatrix< ValueType >::assign ( const _SparseMatrix< ValueType > &  matrix) [inherited]

Method that assigns a sparse matrix, specialization of assign( const Matrix& )

void lama::SparseMatrix< ValueType >::assignTranspose ( const Matrix matrix) [inherited]

Assign another matrix transposed to this matrix.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::buildLocalStorage ( _MatrixStorage storage) const [virtual]

Get the local part (no splitted columns) of a matrix as if colDist is replicated.

Parameters:
[out]storagewill contain the local part of the matrix with all columns.

As splitting of columns is differently handled for sparse and dense matrices, this method is useful for conversion between them. An alternative solution of copying the whole matrix and replication of columns might be too expensive.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::SparseMatrix< ValueType >::checkSettings ( ) [protected, inherited]

Test consistency of sparse matrix data, only used if ASSERT_DEBUG is enabled.

Reimplemented from lama::Matrix.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::clear ( ) [virtual]

Clear the full matrix, resets global and local sizes to 0.

     CSRSparseMatrix<double> a ( ... );
     a = CSRSparseMatrix<double> ();     \\ will free all arrays
     a.clear();                          \\ same functionality, clears involved arrays

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
std::auto_ptr< Matrix > lama::SimpleStorageStrategy< ValueType >::copy ( ) const [virtual]

Constructor function which creates a copy of this matrix.

 std::auto_ptr<Matrix> newMatrix = matrix.copy();
 // More convenient to use, but exactly same as follows:
 std::auto_ptr<Matrix> newMatrix = matrix.create(); *newMatrix = matrix;

This method is a workaround to call the copy constructor of a derived matrix class where the derived class is not known at compile time.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
std::auto_ptr< Matrix > lama::SimpleStorageStrategy< ValueType >::create ( ) const [virtual]

Constructor function which creates a 'zero' matrix of same type as a given matrix.

 void sub( ..., const Matrix& matrix, ...)
 {
     ...
     // Create a copy of the input matrix

     std::auto_ptr<Matrix> newMatrix = matrix.create();
     *newMatrix = matrix;

     // Create a unity matrix of same type and same row distribution as matrix

     std::auto_ptr<Matrix> newMatrix = matrix.create();
     newMatrix->allocate( matrix.getRowDistributionPtr(), matrix.getRowDistributionPtr() );
     newMatrix->setIdentity();
     ...
 }

This method is a workaround to call the constructor of a derived matrix class where the derived class is not known at compile time.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

std::auto_ptr< Matrix > lama::Matrix::create ( const IndexType  numRows,
const IndexType  numColumns 
) const [inherited]

Constructor creates a replicated matrix of same type as a given matrix.

References lama::Matrix::create().

std::auto_ptr< Matrix > lama::Matrix::create ( const IndexType  size) const [inherited]

Constructor creates a distributed zero matrix of same type as a given matrix.

References lama::Matrix::create().

std::auto_ptr< Matrix > lama::Matrix::create ( DistributionPtr  rowDistribution,
DistributionPtr  colDistribution 
) const [inherited]

Constructor creates a distributed zero matrix of same type as a given matrix.

References lama::Matrix::create().

std::auto_ptr< Matrix > lama::Matrix::create ( DistributionPtr  distribution) const [inherited]

Constructor creates a distributed zero matrix of same type as a given matrix.

References lama::Matrix::create().

std::auto_ptr< _LAMAArray > lama::Matrix::createArray ( ) const [inherited]

This routine creates a LAMA array with the same value type as the matrix.

: returns an auto pointer to the LAMA array.

Same as _LAMAArray::create( this.getValueType() )

Value type is known only at runtime, so pointer to the base class is returned. Auto pointer indicates that calling routine takes ownership of the allocated array.

References lama::Matrix::create(), and lama::Matrix::getValueType().

VectorPtr lama::Matrix::createDenseVector ( DistributionPtr  distribution,
const Scalar  value 
) const [inherited]

Constructor creates a distributed dense vector of same type as a given matrix.

References lama::Scalar::DOUBLE, lama::Scalar::FLOAT, lama::Scalar::getValue(), lama::Matrix::getValueType(), and LAMA_THROWEXCEPTION.

Matrix::SyncKind lama::Matrix::getComputeKind ( ) const [inline, inherited]

get the compute kind.

Returns:
the compute kind.

References lama::Matrix::mComputeKind.

Referenced by lama::Matrix::inheritAttributes().

virtual const Context& lama::SparseMatrix< ValueType >::getContext ( ) const [inline, virtual, inherited]

Reimplemented from lama::Matrix.

template<typename ValueType >
ContextPtr lama::SimpleStorageStrategy< ValueType >::getContextPtr ( ) const [virtual]

Getter routine for the context.

Note: Only for SparseMatrix the context of the halo can be queried.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::getDiagonal ( Vector diagonal) const [virtual]

This method returns the diagonal.

Parameters:
[out]diagonalis the destination array

Calculations are dependent to the diagonal property.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

const Halo& lama::SparseMatrix< ValueType >::getHalo ( ) const [virtual, inherited]

Read access to the halo of the distributed matrix.

Implements lama::_SparseMatrix.

const MatrixStorage<ValueType>& lama::SparseMatrix< ValueType >::getHaloStorage ( ) const [inline, virtual, inherited]

Getter routine for halo part of the sparse matrix.

Implements lama::_SparseMatrix.

template<typename ValueType >
IndexType lama::SimpleStorageStrategy< ValueType >::getLocalNumColumns ( ) const [virtual]

Getter routine for the local number of rows and columns.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
IndexType lama::SimpleStorageStrategy< ValueType >::getLocalNumRows ( ) const [virtual]

Getter routine for the local number of rows.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
IndexType lama::SimpleStorageStrategy< ValueType >::getLocalNumValues ( ) const [virtual]

Getter routine for the local number of stored values.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

const MatrixStorage<ValueType>& lama::SparseMatrix< ValueType >::getLocalStorage ( ) const [inline, virtual, inherited]

Getter routine for local part of the sparse matrix.

Implements lama::_SparseMatrix.

template<typename ValueType >
Matrix::MatrixKind lama::SimpleStorageStrategy< ValueType >::getMatrixKind ( ) const [virtual]

Each derived matrix must give info about its kind (DENSE or SPARSE).

Reimplemented from lama::_SparseMatrix.

References LAMA_ASSERT.

template<typename ValueType >
size_t lama::SimpleStorageStrategy< ValueType >::getMemoryUsage ( ) const [virtual]

getMemoryUsage returns the global memory that is allocated to hold this matrix.

getMemoryUsage returns the global memory that is allocated to hold this matrix. For a distributed matrix all partitions are summed together.

Returns:
the memory consumption of this matrix.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
IndexType lama::SimpleStorageStrategy< ValueType >::getNumValues ( ) const [virtual]

Get the total number of non-zero values in the matrix.

An element is considered to be non-zero if its absolute value is greater equal than mEpsilon. Zero diagonal elements are also counted if this->hasDiagonalProperty() is given.

This routine does not count zero elements even if they are stored (e.g. for dense or dia storage data).

Returns:
the number of non-zero values in this matrix.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::getRow ( Vector row,
const IndexType  globalRowIndex 
) const [virtual]

This method returns one row of the matrix.

Parameters:
[out]rowis a replicated vector with all values of the row

Note: the value type of the vector should be the same type as the matrix (otherwise conversion) and it should be a replicated vector (otherwise reallocation)

Unclear: should the distribution always be unchanged ?

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
const char * lama::SimpleStorageStrategy< ValueType >::getTypeName ( ) const [virtual]

Virtual method that delivers the class name to which a matrix belongs.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
Scalar lama::SimpleStorageStrategy< ValueType >::getValue ( IndexType  i,
IndexType  j 
) const [virtual]

returns a copy of the value at the passed global indexes.

Parameters:
[in]ithe global row index
[in]jthe global column index
Returns:
a copy of the value at the passed global position.

As this operation requires communication ins SPMD mode it can be very inefficient in some situations.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
Scalar::ScalarType lama::SimpleStorageStrategy< ValueType >::getValueType ( ) const [virtual]

Query the value type of the matrix elements, e.g.

DOUBLE or FLOAT.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
bool lama::SimpleStorageStrategy< ValueType >::hasDiagonalProperty ( ) const [virtual]

hasDiagonalProperty returns the diagonalProperty of the local storage.

Returns:
if the diagonal property is full filled.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::Matrix::inheritAttributes ( const Matrix other) [inherited]

Inherit context and kind arguments from another matrix.

This routine will also be used by copy constructors in base classes.

References lama::Matrix::getCommunicationKind(), lama::Matrix::getComputeKind(), lama::Matrix::getContextPtr(), lama::Matrix::setCommunicationKind(), lama::Matrix::setComputeKind(), and lama::Matrix::setContext().

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::invert ( const Matrix other) [virtual]

Compute the inverse of a matrix.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
lama::SimpleStorageStrategy< ValueType >::LAMA_LOG_DECL_STATIC_LOGGER ( logger  ) [private]

Reimplemented from lama::SparseMatrix< ValueType >.

void lama::Matrix::matrix2CSRGraph ( IndexType xadj,
IndexType adjncy,
IndexType vwgt,
CommunicatorPtr  comm,
const IndexType globalRowIndices = NULL,
IndexType vtxdist = NULL 
) const [virtual, inherited]

transformation from matrix type to a csr graph

transformation from matrix type to a csr graph, so that it (Par)Metis can work with it.

Parameters:
[out]xadjthe ia array of the csr graph
[out]adjncythe ja array of the csr graph

References LAMA_THROWEXCEPTION.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::matrixTimesMatrix ( Matrix result,
const Scalar  alpha,
const Matrix B,
const Scalar  beta,
const Matrix C 
) const [virtual]

matrixTimesMatrix computes result = alpha * this * B + beta * C

Parameters:
[out]resultthe Matrix to store the result to
[in]alphathe Scalar alpha of the expression
[in]Bthe Matrix B of the expression
[in]betathe Scalar beta of the expression
[in]Cthe Matrix C of the expression

matrixTimesMatrix computes result = alpha * this * x + beta * y.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::SparseMatrix< ValueType >::matrixTimesMatrixImpl ( const ValueType  alpha,
const SparseMatrix< ValueType > &  A,
const SparseMatrix< ValueType > &  B,
const ValueType  beta,
const SparseMatrix< ValueType > &  C 
) [protected, inherited]

Set this matrix = alpha * A * B + beta * C.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::matrixTimesScalar ( const Matrix other,
const Scalar  alpha 
) [virtual]

matrixTimesScalar computes this = alpha * other

Parameters:
[out]otherthe Matrix to mutliply
[in]alphathe Scalar of the expression

matrixTimesScalar computes this = alpha * other.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::matrixTimesVector ( Vector result,
const Scalar  alpha,
const Vector x,
const Scalar  beta,
const Vector y 
) const [virtual]

matrixTimesVector computes result = alpha * this * x + beta * y

Parameters:
[out]resultthe Vector to store the result to
[in]alphathe Scalar alpha of the expression
[in]xthe Vector x of the expression
[in]betathe Scalar beta of the expression
[in]ythe Vector y of the expression

matrixTimesVector computes result = alpha * this * x + beta * y. If result == x or result == y new storage is allocated to store the result.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::SparseMatrix< ValueType >::matrixTimesVectorImpl ( DenseVector< ValueType > &  result,
const ValueType  alpha,
const DenseVector< ValueType > &  x,
const ValueType  beta,
const DenseVector< ValueType > &  y 
) const [inherited]
virtual void lama::SparseMatrix< ValueType >::matrixTimesVectorNImpl ( DenseMatrix< ValueType > &  result,
const ValueType  alpha,
const DenseMatrix< ValueType > &  x,
const ValueType  beta,
const DenseMatrix< ValueType > &  y 
) const [virtual, inherited]

matrix times matrix for multiple dense vectors.

template<typename ValueType >
Scalar lama::SimpleStorageStrategy< ValueType >::maxDiffNorm ( const Matrix other) const [virtual]

returns the max norm of ( this - other )

Parameters:
[in]otheranother matrix with the same shape as this matrix
Returns:
the max norm of ( this - other )

The maximal value is given by the largest difference between two elements at the same position of the matrices.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

ValueType lama::SparseMatrix< ValueType >::maxDiffNormImpl ( const SparseMatrix< ValueType > &  other) const [inherited]

Get the maximal difference between two elements for sparse matrices of same type.

Scalar lama::Matrix::operator() ( IndexType  i,
IndexType  j 
) const [inherited]

returns a copy of the value at the passed global indexes.

Parameters:
[in]ithe global row index
[in]jthe global column index
Returns:
a copy of the value at the passed global position.

As this operator requires communication ins SPMD mode it can be very inefficient in some situations.

References lama::Matrix::getValue().

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::prefetch ( ) const [virtual]

Prefetch matrix data to its 'preferred' context location.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::SparseMatrix< ValueType >::readFromFile ( const std::string &  filename) [inherited]

Assigns this matrix with a replicated sparse matrix read from file.

Creates a replicated sparse matrix read from file. Currently supported is the matrix market format, XDR, formatted, unformatted, binary.

ToDo: set reference to description in StorageIO.

Parameters:
[in]filenamethe filename to read from

Note: Derived classes might use this routine within a constructor for convenience. This class does not support such a constructor as no file format is known.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::redistribute ( DistributionPtr  rowDistribution,
DistributionPtr  colDistribution 
) [virtual]

This method allows any arbitrary redistribution of the matrix.

Parameters:
[in]rowDistributionis new distribution of rows, global size must be mNumRows
[in]colDistributionis new distribution of columns, global size must be mNumColumns

Reimplemented from lama::SparseMatrix< ValueType >.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::resetDiagonalProperty ( ) [virtual]

resetDiagonalProperty rechecks the storages for their diagonal property

Returns:
if the diagonal property is full filled.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::scale ( const Vector scaling) [virtual]

This method scales all values with a vector.

Parameters:
[in]valuesis the source array

row wise calculations

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::scale ( const Scalar  scaling) [virtual]

This method scales all matrix values with a scalar.

Parameters:
[in]valueis the source value

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::Matrix::setCommunicationKind ( SyncKind  communicationKind) [inherited]

set the communication kind.

Parameters:
[in]communicationKindthe communication kind.

References lama::Matrix::mCommunicationKind.

Referenced by lama::Matrix::inheritAttributes().

virtual void lama::SparseMatrix< ValueType >::setComputeKind ( SyncKind  computeKind) [virtual, inherited]

set the compute kind.

Parameters:
[in]computeKindthe compute kind.

Reimplemented from lama::Matrix.

virtual void lama::SparseMatrix< ValueType >::setContext ( const ContextPtr  localContext,
const ContextPtr  haloContext 
) [inline, virtual, inherited]

Only sparse matrices will override this method, others will ignore second argument.

Reimplemented from lama::Matrix.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::setContext ( const ContextPtr  context) [virtual]

specifies on which compute back end the matrix operations should take place.

Parameters:
[in]contextthe compute back to use for calculations with matrix

Note: Only for sparse matrices it is possible to specify separate locations for local and halo computations.

Reimplemented from lama::SparseMatrix< ValueType >.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::setDiagonal ( const Vector diagonal) [virtual]

This method replaces the diagonal.

Parameters:
[in]diagonalis the source array

Calculations are dependent to the diagonal property

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::setDiagonal ( const Scalar  scalar) [virtual]

This method replaces the diagonal by a diagonal value.

Parameters:
[in]scalaris the source value

Calculations are dependent to the diagonal property

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::setIdentity ( ) [virtual]

Operator that sets the matrix to the identity matrix.

 void sub( ..., Matrix& a, ... )
 ...
 LAMA_ASSERT_EQUAL_DEBUG( a.getNumRows(), a.getNumColumns() );
 A.setIdentity();

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

void lama::SparseMatrix< ValueType >::setRawDenseData ( const IndexType  numRows,
const IndexType  numColumns,
const OtherValueType  values[],
const OtherValueType  eps = 0.0 
) [inherited]

Set sparse matrix with global dense data.

void lama::Matrix::setReplicatedMatrix ( const IndexType  numRows,
const IndexType  numColumns 
) [protected, inherited]

Set the global/local size of replicated matrix.

Parameters:
[in]numRowsnumber of rows, must be non-negative.
[in]numColumnsnumber of columns, must be non-negative.

References lama::Matrix::setDistributedMatrix().

Referenced by lama::DenseMatrix< T >::allocate(), lama::DenseMatrix< T >::assign(), lama::DenseMatrix< T >::clear(), and lama::DenseMatrix< T >::DenseMatrix().

void lama::Distributed::swap ( Distributed other) [protected, inherited]
void lama::SparseMatrix< ValueType >::swap ( SparseMatrix< ValueType > &  other) [inherited]

Swap will swap all member variables of the two sparse matrices.

This operation might be useful in iteration loops where a sparse matrix is updated each iteration. It is more convenient than a solution that is based on using pointers in the application.

static const char* lama::SparseMatrix< ValueType >::typeName ( ) [static, inherited]

Getter for the type name of the class.

template<typename ValueType >
void lama::SimpleStorageStrategy< ValueType >::wait ( ) const [virtual]

wait for a possibly running prefetch.

Reimplemented from lama::SparseMatrix< ValueType >.

References LAMA_ASSERT.

virtual void lama::SparseMatrix< ValueType >::writeAt ( std::ostream &  stream) const [virtual, inherited]

Write some information about this to the passed stream.

Parameters:
[out]streamthe stream to write to.

Reimplemented from lama::Matrix.

void lama::SparseMatrix< ValueType >::writeToFile ( const std::string &  fileName,
const File::FileType  fileType = File::BINARY,
const File::DataType  dataType = File::INTERNAL,
const File::IndexDataType  indexDataTypeIA = File::INT,
const File::IndexDataType  indexDataTypeJA = File::INT 
) const [inherited]

Writes this sparse matrix to a file in CSR format.


Field Documentation

Halo lama::SparseMatrix< ValueType >::mHalo [protected, inherited]

Exchange plans for halo part due to column distribution.

boost::shared_ptr<MatrixStorage<ValueType> > lama::SparseMatrix< ValueType >::mHaloData [protected, inherited]

local columns of sparse matrix

template<typename ValueType >
MatrixPtr lama::SimpleStorageStrategy< ValueType >::mInnerMatrix [private]
boost::shared_ptr<MatrixStorage<ValueType> > lama::SparseMatrix< ValueType >::mLocalData [protected, inherited]

local columns of sparse matrix


The documentation for this class was generated from the following files: